

Cubesats and Nanosats at JPL Overview

- JPL is known for its flagship missions to explore our solar system
- More recently, JPL has engaged with the cubesat/smallsat community to develop smaller missions for deep space exploration
- This talk will describe those activities

Science Instrument Examples

HARP Imaging Polarimeter(3U)

Mass Spectrometer (3U)

JPL (TBD)

RainCube radar (6U)

JPL (2017)

LunariceCube (6U)

IR spectrometer

GSFC (2018)

Lunar Flashlight (6U)
NIR laser

MSFC/JPL (2017)

VSWIR-Dyson (2U) spectrometer

JPL (TBD)

Cubesat-sized Instruments – 2012 and 2017

	recimology	Krejci, 2012	2017	Justilication
	Atmospheric Chemistry Instruments	Problematic	Feasible	PICASSO, IR sounders
	Atmos Temp and Humidity Sounders	Feasible	Feasible	
	Cloud Profile and rain radars	Infeasible	Feasible	JPL RainCube Demo
	Earth Radiation Budget radiometers	Feasible	Feasible	SERB, RAVAN
	Gravity Instruments	Feasible	Feasible	Need a demo mission
	Hi-res Optical Imagers	Infeasible	Feasible	Planetlabs
	Imaging microwave radars	Infeasible	Feasible	Ka-Band 12U design
	Imaging multi-spectral radiometers (Vis/IR)	Problematic	Feasible	AstroDigital
	Imaging multi-spectral radiometers (μWave)	Problematic	Feasible	TEMPEST,
	Lidars	Infeasible	Feasible	DIAL laser occultation
	Lightning Imagers	Feasible	Feasible	
	Magnetic Fields	Feasible	Feasible	InSPIRE
	Multiple direction/polarization radiometers	Problematic	Feasible	HARP Polarimeter
	Ocean color instruments	Feasible	Feasible	SeaHawk
	Precision orbit	Feasible	Feasible	CanX-4 and -5
	Radar altimeters	Infeasible	Feasible	Bistatic LEO-GEO
	Scatterometers	Infeasible	Feasible	GPS refl. (CyGNSS)

Cupid's Arrow (Venus)

Other Smallsat Studies

- JUpiter MagnetosPheric boundary ExploreR (JUMPER)
- Small Next-generation Atmospheric Probe for clouds of Uranus (SNAP)
- Phobos and Deimos Cubesat Explorer (Chariot)

ExCSITE

*Proposed Wission - Pre-Decisional – for Planning and Discussion Purposes Only

ASTERIA: Arcsecond Space Telescope Enabling Research in Astrophysics

© 20% California Instruce of Technology.

Lat. G-were ment sponsorship

Mars Helicopter under Investigation

MarsDrop

JPL Technologies and Standards

Deep SpaceTransponder

Deployable Reflector

Micro-Electric Propulsion

DSN Communications and Navigation Protocols

OnBoard Data Reduction

Low Mass Radio Transponder

Jet Propulsion Laboratory California Institute of Technology

Deep Space P-POD Concept

Lunar Flashlight—
shining a light into
the dark corners of
our Moon

[SLS flight EM-1 plans to carry up to 12 cubesats into lunar space in 2018]

NEAScout

EXPLORATION MISSION-1: LAUNCHING **SCIENCE & TECHNOLOGY** SECONDARY PAYLOADS

SUPPORTS BOTH PRIMARY MISSION AND SECONDARY PAYLOADS

PRIMARY MISSION

TESTING SLS AND ORION

SPACE LAUNCH SYSTEM (SLS)

JETS MORE THAN ANY EXISTING LAUNCH

VEHICLE

ORION .

TRAVELING THOUSANDS OF MILES BEYOND THE MOON. WHERE NO CREW VEHICLE

SECONDARY **PAYLOADS**

THE RING THAT WILL CONNECT THE ORION SPACECRAFT TO NASA'S SLS ALSO HAS ROOM FOR 13 HITCHHIKER **PAYLOADS**

SHOEBOX SIZE

13

CUBESAT EXPLORERS

GOING TO DEEP SPACE

WHERE FEW CUBESATS HAVE EVER GONE BEFORE.

PAYLOADS EXPAND OUR KNOWLEDGE FOR THE JOURNEY TO MARS

#RIDEONSLS

SPACECRAFT

HAS GONE BEFORE

AVIONICS

(SELF-CONTAINED AND INDEPENDENT FROM THE PRIMARY MISSION) SEND CUBESATS ON THEIR WAY

EM-1 (2019): THE FIRST SCIENCE **SWARM OF CUBESATS** [Ride-alongs]

SUPPORTS BOTH PRIMARY MISSION AND SECONDARY PAYLOADS

ORION . **SPACECRAFT**

TRAVELING THOUSANDS OF MILES BEYOND THE MOON. WHERE NO CREW VEHICLE

(SELF-CONTAINED AND INDEPENDENT

HAS GONE BEFORE 2017 California Institute PRIMARY, MISSION) U.S. Governing M.S. Governing WAY

CUBESAT EXPLORERS

GOING TO DEEP SPACE WHERE FEW CUBESATS HAVE EVER GONE BEFORE.

SECONDARY PAYLOADS

THE RING THAT WILL CONNECT THE ORION SPACECRAFT TO NASA'S SLS ALSO HAS ROOM FOR 13 HITCHHIKER **PAYLOADS**

SHOEBOX SIZE

PAYLOADS EXPAND OUR KNOWLEDGE FOR THE JOURNEY TO MARS

#RIDEONSLS

SPACE LAUNCH SYSTEM

PRIMARY

MISSION

TESTING SLS

AND ORION

SLS

JIFTS MORE THAN ANY EXISTING

LAUNCH

VEHICL

acknowledged.

Sun Radio Imaging Space Experiment

Mission Concept

Cubesats and Nanosats at JPL Summary

- JPL has a healthy portfolio of science-driven Smallsat/cubesat flight projects
- We have a full pipeline of new mission concepts in development
- Visit our web site at:

www.jpl.nasa.gov/cubesat/